Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Extremophiles ; 15(5): 565-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21761211

RESUMO

An anaerobic, halophilic, and fermentative bacterium, strain S200(T), was isolated from a core sample of a deep hypersaline oil reservoir. Cells were rod-shaped, non-motile, and stained Gram-positive. It grew at NaCl concentrations ranging from 6 to 26% (w/v), with optimal growth at 15% (w/v) NaCl, and at temperatures between 25 and 47°C with an optimum at 40-45°C. The optimum pH was 7.3 (range 6.2-8.8; no growth at pH 5.8 and pH 9). The doubling time in optimized growth conditions was 3.5 h. Strain S200(T) used exclusively carbohydrates as carbon and energy sources. The end products of glucose degradation were lactate, formate, ethanol, acetate, H(2), and CO(2). The predominant cellular fatty acids were non-branched fatty acids C(16:1), C(16:0), and C(14:0). The G + C mole% of the DNA was 32.7%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain S200(T) formed a distinct lineage within the family Halobacteroidaceae, order Halanaerobiales, and was most closely related to Halanaerobaculum tunisiense DSM 19997(T) and Halobacteroides halobius DSM 5150(T), with sequence similarity of 92.3 and 91.9%, respectively. On the basis of its physiological and genotypic properties, strain S200(T) is proposed to be assigned to a novel species of a novel genus, for which the name Halanaerocella petrolearia is proposed. The type strain of Halanaerocella petrolearia is strain S200(T) (=DSM 22693(T) = JCM 16358(T)).


Assuntos
Metabolismo dos Carboidratos/fisiologia , Bactérias Gram-Positivas Formadoras de Endosporo/genética , Bactérias Gram-Positivas Formadoras de Endosporo/metabolismo , Filogenia , Anaerobiose/fisiologia , Sequência de Bases , Genótipo , Bactérias Gram-Positivas Formadoras de Endosporo/citologia , Bactérias Gram-Positivas Formadoras de Endosporo/isolamento & purificação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Salinidade
2.
Appl Environ Microbiol ; 72(12): 7540-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17012592

RESUMO

In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30 degrees C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6 mM MT was applied, corresponding to a volumetric loading rate of 16.5 mmol liter-1 day-1. The archaeal community within the reactor was characterized by anaerobic culturing and denaturing gradient gel electrophoresis analysis, cloning, and sequencing of 16S rRNA genes and quantitative PCR. Initially, MT-fermenting methanogenic archaea related to members of the genus Methanolobus were enriched in the reactor. Later, they were outcompeted by Methanomethylovorans hollandica, which was detected in aggregates but not inside the granules that originated from the inoculum, the microbial composition of which remained fairly unchanged. Possibly other species within the Methanosarcinacaea also contributed to the fermentation of MT, but they were not enriched by serial dilution in liquid media. The archaeal community within the granules, which was dominated by Methanobacterium beijingense, did not change substantially during the reactor operation. Some of the species related to Methanomethylovorans hollandica were enriched by serial dilutions, but their growth rates were very low. Interestingly, the enrichments could be sustained only in the presence of MT and did not utilize any of the other typical substrates for methylotrophic methanogens, such as methanol, methyl amine, or dimethylsulfide.


Assuntos
Reatores Biológicos , Methanosarcinaceae/metabolismo , Papel , Esgotos/microbiologia , Compostos de Sulfidrila/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biodegradação Ambiental , Resíduos Industriais , Laboratórios , Methanobacterium/genética , Methanobacterium/crescimento & desenvolvimento , Methanobacterium/metabolismo , Methanosarcinaceae/classificação , Methanosarcinaceae/genética , Methanosarcinaceae/crescimento & desenvolvimento , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Int J Syst Evol Microbiol ; 55(Pt 6): 2465-2470, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16280511

RESUMO

A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAW(T), was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAW(T) were non-motile, irregular cocci, 0.7-1.5 mum in diameter and usually occurred singly (sometimes forming clusters of two or four cells). The cells stained Gram-negative and lysed immediately in 0.1 % (w/v) SDS. Growth was inhibited by chloramphenicol and tetracycline, but not by penicillin, bacitracin, spectinomycin, vancomycin or kanamycin. Methanol and mono-, di- and trimethylamine were used as substrates, but H2/CO2, formate, acetate, propanol, dimethyl sulfide and methanethiol were not. The temperature range for growth was 42-58 degrees C, with an optimum at 50 degrees C. The fastest growth was observed at a salinity below 100 mM NaCl; no growth occurred above 300 mM NaCl. The optimal pH for growth was 6.5; growth was observed from pH 5 to pH 7.5. The G+C content of the genomic DNA was 37.6 mol%. Analysis of the 16S rRNA gene sequence and the partial methyl-CoM reductase gene sequence revealed that the organism was phylogenetically closely related to Methanomethylovorans hollandica DMS1T (98 % similarity for the 16S rRNA gene sequence and 91 % similarity for the methyl-CoM reductase gene sequence). The DNA-DNA relatedness between L2FAW(T) and Methanomethylovorans hollandica DMS1T was 46 %. On the basis of these results, strain L2FAW(T) (=DSM 17232T=ATCC BAA-1173T) represents the type strain of a novel species, for which the name Methanomethylovorans thermophila sp. nov. is proposed.


Assuntos
Metanol/metabolismo , Methanosarcinaceae/isolamento & purificação , Sulfetos/metabolismo , Anaerobiose , Sequência de Bases , Reatores Biológicos/microbiologia , Methanosarcinaceae/genética , Methanosarcinaceae/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Temperatura
4.
Water Sci Technol ; 45(10): 55-60, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12188577

RESUMO

Microbial cycling of volatile organic sulfur compounds (VOSC) is investigated due to the impact these compounds are thought to have on environmental processes like global temperature control, acid precipitation and the global sulfur cycle. Moreover, in several kinds of industries like composting plants and the paper industry VOSC are released causing odor problems. Waste streams containing these compounds must be treated in order to avoid the release of these compounds to the atmosphere. This paper describes the general mechanisms for the production and degradation of methanethiol (MT) and dimethyl sulfide (DMS), two ubiquitous VOSC in anaerobic environments. Slurry incubations indicated that methylation of sulfide and MT resulting in MT and DMS, respectively, is one of the major mechanisms for VOSC in sulfide-rich anaerobic environments. An anaerobic bacterium that is responsible for the formation of MT and DMS through the anaerobic methylation of H2S and MT was isolated from a freshwater pond after enrichment with syringate as a methyl group donating compound and sole carbon source. In spite of the continuous formation of MT and DMS, steady state concentrations are generally very low. This is due to the microbial degradation of these compounds. Experiments with sulfate-rich and sulfate-amended sediment slurries demonstrated that besides methanogens, sulfate-reducing bacteria can also degrade MT and DMS, provided that sulfate is available. A methanogen was isolated that is able to grow on DMS as the sole carbon source. A large survey of sediments slurries of various origin demonstrated that both isolates are commonly occurring inhabitants of anaerobic environments.


Assuntos
Poluentes Ocupacionais do Ar/metabolismo , Bactérias Anaeróbias/fisiologia , Euryarchaeota/fisiologia , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Chuva Ácida , Poluentes Ocupacionais do Ar/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Efeito Estufa , Compostos de Sulfidrila/análise , Sulfetos/análise , Volatilização
5.
Cell Mol Life Sci ; 59(4): 575-88, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12022467

RESUMO

Microbial cycling of volatile organic sulfur compounds (VOSCs), especially dimethyl sulfide (DMS) and methanethiol (MT), is intensively studied because these compounds play an important role in the processes of global warming, acid precipitation, and the global sulfur cycle. VOSC concentrations in freshwater sediments are low due to the balance between the formation and degradation of these compounds. These reactions occur for the greater part at the oxic/anoxic interphase of sediment and water column. In contrast to marine ecosystems, where dimethylsulfoniopropionate is the main precursor of MT and DMS, in freshwater ecosystems, VOSCs are formed mainly by methylation of sulfide and to a lesser extent from the degradation of S-containing amino acids. One of the major routes for DMS and MT formation through sulfide methylation is anaerobic O-demethylation of methoxylated aromatic compounds. Inhibition studies have revealed that the major part of the endogenously produced MT and DMS is degraded anaerobically by methanogens. The major bacterial groups involved in formation and consumption of VOSCs are described.


Assuntos
Bactérias/metabolismo , Compostos de Enxofre/metabolismo , Ecossistema , Água Doce , Metilação , Modelos Químicos , Oxirredução , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo
6.
Appl Environ Microbiol ; 67(9): 4017-23, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11525999

RESUMO

Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Sulfetos/metabolismo , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/isolamento & purificação , Biodegradação Ambiental , Água Doce/química , Água Doce/microbiologia , Genes de RNAr , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Compostos de Sulfidrila/metabolismo
7.
Appl Environ Microbiol ; 67(3): 1044-51, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11229890

RESUMO

Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.


Assuntos
Dimetil Sulfóxido/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Methanosarcinaceae/isolamento & purificação , Methanosarcinaceae/metabolismo , Compostos de Sulfidrila/metabolismo , Sequência de Bases , Biodegradação Ambiental , Contagem de Colônia Microbiana , DNA Arqueal/análise , Desoxirribonuclease HindIII/metabolismo , Sedimentos Geológicos/química , Methanosarcinaceae/classificação , Methanosarcinaceae/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 65(8): 3641-50, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10427061

RESUMO

A newly isolated methanogen, strain DMS1(T), is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1(T) are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1(T) differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1(T) is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1(T) is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1(T) can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems.


Assuntos
Sedimentos Geológicos/microbiologia , Methanosarcinaceae/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Água Doce/microbiologia , Methanosarcinaceae/genética , Methanosarcinaceae/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo
9.
Appl Environ Microbiol ; 65(5): 2116-21, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10224009

RESUMO

The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.


Assuntos
Bactérias Anaeróbias/metabolismo , Dimetil Sulfóxido/metabolismo , Euryarchaeota/metabolismo , Compostos de Sulfidrila/metabolismo , Anaerobiose , Bactérias Anaeróbias/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Euryarchaeota/efeitos dos fármacos , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Hidrogênio/farmacologia , Cinética , Sulfatos/farmacologia
10.
Appl Environ Microbiol ; 65(2): 438-43, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9925565

RESUMO

Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry. h-1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0. 32 nmol per ml of sediment slurry. h-1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i. e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 microM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 microM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental
11.
Appl Environ Microbiol ; 63(12): 4741-7, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16535751

RESUMO

Concentrations of volatile organic sulfur compounds (VOSC) were measured in water and sediment columns of ditches in a minerotrophic peatland in The Netherlands. VOSC, with methanethiol (4 to 40 nM) as the major compound, appeared to be mainly of sediment origin. Both VOSC and hydrogen sulfide concentrations decreased dramatically towards the water surface. High methanethiol and high dimethyl sulfide concentrations in the sediment and just above the sediment surface coincided with high concentrations of hydrogen sulfide (correlation factors, r = 0.91 and r = 0.81, respectively). Production and degradation of VOSC were studied in 32 sediment slurries collected from various freshwater systems in The Netherlands. Maximal endogenous methanethiol production rates of the sediments tested (up to 1.44 (mu)mol per liter of sediment slurry (middot) day(sup-1)) were determined after inhibition of methanogenic and sulfate-reducing populations in order to stop VOSC degradation. These experiments showed that the production and degradation of VOSC in sediments are well balanced. Statistical analysis revealed multiple relationships of methanethiol production rates with the combination of methane production rates (indicative of total anaerobic mineralization) and hydrogen sulfide concentrations (r = 0.90) or with the combination of methane production rates and the sulfate/iron ratios in the sediment (r = 0.82). These findings and the observed stimulation of methanethiol formation in sediment slurry incubations in which the hydrogen sulfide concentrations were artificially increased provided strong evidence that the anaerobic methylation of hydrogen sulfide is the main mechanism for VOSC formation in most freshwater systems. Methoxylated aromatic compounds are likely a major source of methyl groups for this methylation of hydrogen sulfide, since they are important degradation products of the abundant biopolymer lignin. Increased sulfate concentrations in several freshwater ecosystems caused by the inflow of water from the river Rhine into these systems result in higher hydrogen sulfide concentrations. As a consequence, higher fluxes of VOSC towards the atmosphere are conceivable.

12.
Antonie Van Leeuwenhoek ; 69(4): 317-22, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8836429

RESUMO

Axenic mass cultivation of Acanthamoeba castellanii in laboratory fermentors (141) yielded after 20 days approximately 3 g cells (wet weight). After a short lag phase amoebal cell numbers increased exponentially to a maximum of 3.5 x 10(5) cells per ml until cell death occurred after 20 days. Optical density and protein concentrations revealed identical patterns. During amoebal growth only 12-19% of the initially added glucose (100 mM) as sole carbon source was used. Large amounts of ammonia (1 g in 10.51 culture volume) were excreted into the medium which subsequently raised the pH from 6.6 to 7.7, and from 6.6 to 6.8 in 2 and 20 mM buffered media, respectively. Growth inhibition and cell death could not be explained by a depletion of glucose or oxygen limitations during growth. The production of ammonia had a growth inhibitory effect, however, the sudden termination of the exponential growth phase and cell death could not be explained by the toxic influence of ammonia only.


Assuntos
Acanthamoeba/crescimento & desenvolvimento , Fermentação , Acanthamoeba/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Animais , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...